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We consider collective excitations in graphene with filled Landau levels �LL’s� in the presence of an external
potential due to a single charged donor D+ or acceptor A− impurity. We show that localized collective modes
split off the magnetoplasmon continuum and, in addition, quasibound states are formed within the continuum.
A study of the evolution of the strengths and energies of magneto-optical transitions is performed for integer
filling factors �=1,2 ,3 ,4 of the lowest LL. We predict impurity absorption peaks above as well as below the
cyclotron resonance. We find that the single-particle electron-hole symmetry of graphene leads to a duality
between the spectra of collective modes for the D+ and A−. The duality shows up as a set of the D+ and A−

magnetoabsorption peaks having the same energies but active in different circular polarizations.
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I. INTRODUCTION

Graphene, a two-dimensional form of carbon,1 displays
exciting physics, distinct from that of the two-dimensional
electron gas �2DEG�. A striking example in the presence of a
magnetic field is the anomalous integer quantum-Hall effect,
which has been observed at room temperature.2,3 The treat-
ment of electronic interactions is also challenging in
graphene due to the structure and symmetry of the dispersion
relations at the two inequivalent Dirac points. When scatter-
ing between these points is negligible, the chirality of the
electrons results in a suppression of backscattering.4 This
together with graphene’s reduced level of defects and impu-
rities, makes it highly efficient at charge transport and a
promising candidate for use in nanotechnology.5,6 However,
in order for this potential to be realized, we need to better
understand the precise nature of defects in graphene. Optical
measurements are a particularly useful tool for probing
this.7–10

In this paper, we study the magneto-optical response of
graphene in a strong perpendicular magnetic field in the pres-
ence of a low density of charged impurities. Infrared studies
of Landau-level �LL� transitions have reported significant de-
partures from the bare �noninteracting� cyclotron reso-
nance.7,8 Whether this can be attributed solely to interaction
effects and a possible role of disorder remains unclear. Here
we develop a general formalism for studying localized col-
lective modes of magnetoplasmon and spin-wave types and
determine their optical signatures. We treat the electron-
electron �e-e� interactions beyond the conventional mean-
field/random-phase approximation level and the electron-
impurity interaction exactly in the high magnetic field
regime. Our results are robust for a range of impurity screen-
ing strengths. We establish the existence of an exact symme-
try for collective excitations, which should be observable by
magneto-optical spectroscopy.7–10 This symmetry, briefly
speaking, connects the magneto-optical electronlike excita-
tions of, e.g., a positively charged donor D+, with holelike
excitations for a negatively charged acceptor A−. This duality
is a consequence of the electron-hole symmetry between

single-particle states in the lower and upper cones of graph-
ene.11 Furthermore, we establish exact optical selection rules,
which demonstrate that the “dual” collective excitations with
total angular momenta Mz= �1 are active in two different
circular polarizations �� and, besides having the same ener-
gies, exhibit the same oscillator strengths. Therefore, a quali-
tative distinction of graphene from the conventional 2DEG,12

is that there are strong dipole-allowed transitions in both
circular polarizations sensitive to the charge of impurity. We
show an example of this symmetry for the lowest LL n=0 in
Fig. 1. Each LL in graphene consists of four sublevels due to
spin and valley �pseudospin� splitting. We denote by ��� a
many-electron ground state corresponding to the sublevel
filling factor � of a particular LL. For sublevels �=1,2 ,3 of
LL with number n, the eigenstates and eigenenergies of ex-
citations localized on the D+ with Mz, coincide precisely
with those with −Mz formed at filling factor �−4 of the LL
with number −n, localized on the A−. This effect represents
what remains of the electron-hole symmetry after it has been
broken by a charged impurity.

II. THEORETICAL APPROACH

We consider collective excitations in a system of electrons
interacting via a screened Coulomb potential Uee= e2

��r1−r2�
�Refs. 13–15� in the presence of an additional external field
V. All the results presented here are for a Coulomb impurity,
V= �e2 /�imp�r�,16 but the method is applicable for any non-
singular axially symmetric potential V��r��. The parameters �
and �imp are the effective dielectric constants for e-e interac-
tion and electron-impurity screening,17 respectively. A com-
posite index N= �ns�� is used to designate the LL number n,
the spin s= ↑ ,↓, and pseudospin �= ⇑ ,⇓ projections. Low-
energy collective excitations correspond to the promotion of
one electron from one of the uppermost filled levels N2 to a
higher lying empty level N1 �see Fig. 1�.

Electrons in graphene follow a linear dispersion relation
close to the zeroes of energy �Dirac points�, which occur at
two inequivalent points in the Brillouin zone, the K and K�
valleys.11 We describe a perpendicular magnetic field B by
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the symmetric gauge A= 1
2B�r, consistent with the axial

symmetry of V��r��. A single-electron wave function in, e.g.,
the K valley �pseudospin ⇑�, is a four-component spinor

�ns⇑m�r� = �r�cns⇑m
† �0� = an�sn��n�−1m�r�,��n�m�r�,0,0	�s.

�1�

Here, n is an integer LL number, �nm�r� is a 2DEG wave
function with oscillator quantum number m=0,1 , . . .,
an=2�	n,0−1�/2, sn=sign�n� �with s0=0�, and �s is the spin part
corresponding to two spin projections s= ↑ ,↓.18 The wave
function in the K� valley �pseudospin ⇓� is obtained by
changing the order of the spinor components. The spinors are
the eigenstates of the generalized �orbital plus isospin �sub-
lattice�	 angular momentum projection ĵze= lz+ 1

2�z �Ref. 19�
with half-integer eigenvalues jz= �n�−m− 1

2 . The single-
electron energies are given by 
N=sign�n���c


�n�+��ssz

+��v�z, where ��c=vF

2e�B /c is the cyclotron energy in

graphene, ��s is the Zeeman splitting, and ��v is a possible
valley splitting.20 Using the hole representation for all filled
levels, cNm→dNm

† and cNm
† →dNm for 
N
F, we introduce

operators of collective excitations as

QN1N2Mz

† = �
m1,m2=0

�

AN1N2Mz
�m1,m2�cN1m1

† dN2m2

† �2�

with expansion coefficients satisfying the condition
AN1N2Mz

�m1 ,m2��	Mz,�n1�−m1−�n2�+m2
. An exact quantum num-

ber Mz is an eigenvalue of the total Ĵz= ĵze+ ĵzh; for neutral
collective excitations Mz is integer and of purely orbital na-
ture. It has a direct geometrical meaning12 determining the
average positions of the electron and the hole relative to the
impurity, i.e.,

�N1N2Mz�rh
2 − re

2�N1N2Mz�

= �2�Mz + 2��n2� − �n1�� + 1	 + 	n2,0 − 	n1,0��B
2 , �3�

where the states are defined as QN1N2Mz

† ����N1N2Mz�.
Considering the total Hamiltonian H=H0+Uee+V matrix

elements �N1�N2�Mz�H�N1N2Mz�=HN1N2

N1�N2��Mz�, we find that
the effective Hamiltonian is given by

ĤN1N2

N1�N2� = 	N1�,N1
	N2�,N2 �

m=0

�

�
̃N1
+ VN1m�cN1m

† cN1m

− 	N1�,N1
	N2�,N2 �

m=0

�

�
̃N2
+ VN2m�dN2m

† dN2m

− �
m1,m2

m1�,m2�

WN1m1N2m2

N1�m1�N2�m2�cN1�m1�
† dN2�m2�

† dN2m2
cN1m1

. �4�

Here 
̃N=
N+ESE�N� denotes the single-particle LL energy
renormalized by e-e exchange self-energy corrections
ESE�N�.13 Since Kohn’s theorem is not applicable in
graphene, these corrections lead to the renormalization of the
bare cyclotron energy, ��̃c=��c+	��c.

7,14 For the
n=0→n=1 transition �denoted hereafter by T01�, 	��c is
due only to exchange interactions with the lower cone and
	��c�0.92E0. Here E0= �� /2�1/2e2 /�lB is the characteristic
energy of Coulomb interactions in strong B, lB= ��c /eB�1/2.

Due to the spinor form of the single-particle wave func-
tions, the impurity matrix elements in graphene are con-
nected with those in the conventional 2DEG,12

Vnm= ��nm�V�r���nm�, according to

VNm = ��Nm�V�r���Nm� = an
2�sn

2V�n�−1m + V�n�m� . �5�

The two-body interaction in Eq. �4� consists of the direct
electron-hole �e-h� attraction and exchange e-h repulsion,
i.e.,

(a) (b)

FIG. 1. Magnetoplasmons bound on �a� a charged donor D+ at �=1 and �b� a charged acceptor A− at �=3. Energies are given relative to
��̃c in units of E0 and � /�imp=1 �see text�. The spectra exhibit the symmetry D+↔A−, Mz↔−Mz, and �↔4−�. The hatched area of width
0.75E0 represents the continuum of extended magnetoplasmons. Quasibound states within the continuum are not shown. Insets show four
branches of resonantly mixed inter-LL transitions conserving spin and pseudospin.
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WN1m1N2m2

N1�m1�N2�m2� = WN1m1N2�m2�
N1�m1�N2m2 − WN1m1N2�m2�

N2m2N1�m1�. �6�

In electron representation,

WN1m1N2m2

N1�m1�N2�m2�  ��N1�m1�
�N2�m2�

�Uee��N1m1
�N2m2

�

= 	s1,s1�
	�1,�1�

	s2,s2�
	�2,�2�

Un1m1n2m2

n1�m1�n2�m2�, �7�

note that we neglect the intervalley scattering in graphene by
long-range �Coulomb� potentials. Therefore the two-particle
graphene matrix elements are given by

Un1m1n2m2

n1�m1�n2�m2� = an1
an2

an1�
an2�

�U�n1�m1�n2�m2

�n1��m1��n2��m2� + sn1
sn1�

U�n1�−1m1�n2�m2

�n1��−1m1��n2��m2�

+ sn2
sn2�

U�n1�m1�n2�−1m2

�n1��m1��n2��−1m2�

+ sn1
sn2

sn1�
sn2�

U�n1�−1m1�n2�−1m2

�n1��−1m1��n2��−1m2�	 , �8�

where Un1m1n2m2

n1�m1�n2�m2�= ��n1�m1�
�n2�m2�

�Uee��n1m1
�n2m2

� are those used
in the conventional 2DEG. We compute the matrix elements
for lowest LL’s analytically12 and those for arbitrary LL’s
numerically using Eq. �8�.

In general, an infinite number of excitations, Eq. �2�, with
the same Mz are mixed by the e-e interactions. However,
those with different single-particle cyclotron energies are
only weakly ��E0 /��c� mixed in strong magnetic fields in
graphene and can be neglected.13,14 Let us suppose all LL’s
with n�0 are completely filled, all LL’s with n�0 are
empty, and the four LL’s with n=0 become successively
completely filled. We designate the corresponding filling fac-
tors as �=1,2 ,3 ,4. For each �, there are sixteen possible
inter-LL excitations involving the n=0 LL as an initial or
final state and which have single-particle energies of magni-
tude ���̃c. Here we concentrate on the four excitations for
which no spin or pseudospin flip occurs �see the insets in
Fig. 1�, as these are the only excitations which are optically
dipole active. These have the same single-particle energy
��̃c and, therefore, are strongly �resonantly� mixed.

Let us discuss some general features of our approach. In
the absence of an external potential all magnetoplasmon
states are extended and the corresponding Hamiltonian ma-
trix is infinite, see Eq. �4�. The magnetoplasmons can be
labeled by a continuous quasimomentum K and their
eigenenergies fill a band of width �E0.13–15 In the presence
of an impurity, however, some states become localized. Im-
portantly, the basis states, Eq. �2�, are localized two-particle
orbitals whose distances from the impurity increase
��2m�1/2lB.12 Hence, for localized excitations the scheme is
convergent so that the basis can be truncated. We include the
first N=50 basis states for each excitation QN1N2Mz

† with the
total matrix size being 4N for four strongly mixed excita-
tions. The achieved accuracy in eigenenergies of bound
states is better than 0.1%.

III. RESULTS AND DISCUSSION

Figure 1�a� shows for �=1 four low-energy branches of
magnetoplasmons bound on the D+ for Mz�0; two of these

branches are degenerate. For large positive Mz, the hole is on
average much farther from the impurity than the electron, see
Eq. �3�. Therefore, the e−-D+ attraction dominates over the
h+-D+ and e-h interactions. Generally, for an excitation with
the electron in the nth LL, we find branches with asymptotic
Mz�1 energies equal to Vnm, when counted from the corre-
sponding renormalized cyclotron energy. As an example, no-
tice the three branches approaching energy −0.25E0 and the
single branch approaching zero energy in Fig. 1�a�. These
originate, respectively, from the three n=−1→n=0 transi-
tions �denoted hereafter as T−10� and from the single T01
transition for �=1. Similar asymptotic behavior can be seen
for other filling factors. The high-energy �i.e., above the
band� magnetoplasmons develop for Mz�0, when the hole is
on average closer to the D+ than the electron. Such unusual
excited states are bound in 2D because of the confining effect
of B.12 Figure 1�b� shows the spectra for �=3 for the A−

which is a “mirror reflection” of Fig. 1�a� because of the
aforementioned symmetry. Generally, due to the symmetry,
results for the A− at �=1,2 ,3 can be obtained from those for
the D+ by changing Mz→−Mz and �→4−�. For all filling
factors, the spectra of bound states are qualitatively similar
to those shown in Fig. 1. For �=4, the states can be classified
according to the total spin and pseudospin, so the states are
either spin and pseudospin singlets or triplets.13,14 Only spin
and pseudospin singlets are optically active.

Let us consider the magneto-optical response in
graphene.14,21 In the electric dipole approximation, the inter-
action of electrons with light of frequency � and left �+� and
right �−� circular polarizations is described by the Hamil-
tonian

	H� =
evFEe−i�t

i�c
��� 0

0 ��
� , �9�

where E is the electric field amplitude and ��=�x� i�y are
the Pauli matrices acting in the space of the graphene crystal
sublattices. The exact optical selection rules for the collec-
tive excitations that follow are: only those with no spin or
pseudospin flips and with Mz= �1 and �n1�− �n2�= �1 are
optically active in the two circular polarizations ��. We
quantify the rate of microwave absorption in the �� polar-
ization by calculating the dipole transition matrix elements
�d�

��2= ��Mz= �1�	H�����2 to final states of magnetoplas-
mons obtained by numerical diagonalization.

Figure 2 shows optical properties of states bound on D+

for the �+ and �− polarizations. The results for the A− at
�=1,2 ,3 can be obtained from those reported here with the
change �↔4−� and �+↔�−. Two types of localized states
can be optically observed: �i� truly bound states, which are
split off the continuum and have normalizable wave func-
tions, �ii� quasibound states within the continuum, which
have high probability amplitudes on the impurity and long-
range oscillating tails. The latter may exhibit asymmetric
Fano-type optical signatures.22

For both polarizations, the upper branch originates mostly
from the T01 transitions with some small �zero at �=4� ad-
mixture of the T−10. With increasing �, the number of T01
transitions increases, which leads to the enhanced contribu-
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tion of the repulsive e-h exchange interactions. This explains
the blueshift of the upper branch to higher energies with
increasing �. Also, its optical strength �d�

+�2 increases �Fig.
2�a�	 while �d�

−�2 decreases �Fig. 2�b�	. This is explained by
the fact that in the �+ ��−� polarization only the electronlike
T01 �holelike T−10� transitions are optically active.

Screening was shown to be relevant in graphene,17 al-
though the situation is not yet fully understood, particularly
for a strong magnetic field. Coulomb impurities with charge
Z=1 belong to the subcritical regime and hence screening
effects due to the substrate and the electron system in
graphene can be modeled via an effective charge Zeff�Z,17

or by an effective dielectric constant �imp. However the value
relative to the e-e screening constant, � /�imp is unknown for

graphene.13,14 We use � /�imp=1 in Figs. 1 and 2 and show in
Fig. 3 how the energies of the excitations for, e.g., the �=3
case of Fig. 2�a� are modified by � /�imp1. As this ratio
increases, the branches of optically active bound states are
pushed away from the band of extended magnetoplasmons.

IV. CONCLUSIONS

In conclusion, we established the spectra and the symme-
tries of collective excitations bound on charged impurities in
graphene in magnetic fields. Our single-impurity theory is
applicable to samples with finite impurity density
nimp�1 /�lB

2 , i.e., when the mean separation between impu-
rities exceeds the size of bound magnetoplasmons. The in-
tensity of impurity peaks will then be I�

��nimp�d�
��2. Recent

progress in fabrication of large graphene films23 with sizes
exceeding the wavelength ��2�c /
��̃c ��60–100 �m�
opens the way for detailed studies of the effects predicted
here. Polarization resolved magneto-optical spectroscopy
and cyclotron resonance detection using the photoconductive
response may be very effective experimental probes. Our
results demonstrate the breaking of particle-hole symmetry
in a sample with predominantly positive or negative impuri-
ties, which may partly explain the observed asymmetry in
LL transitions.8 The developed method can be extended for
defects with short-range potentials, results will be published
elsewhere.24
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(a)

(b)

FIG. 2. Evolution with filling factor � of energies and optical
strengths of magnetoplasmons bound on the D+ with �a� Mz=1
active in the �+ polarization and �b� with Mz=−1 active in the �−

polarization. The optically active states are indicated by circles with
sizes ��d�

��2; the strongest branches are shown by solid circles ���.
The diamonds represent optically dark states. The dotted lines are
guides to the eye. Inset: dipole strength �d�

−�2 vs energy for �=2. The
spectra were convoluted with a Gaussian of width 0.03E0. The ar-
row indicates an impurity-related feature below ��̃c �below energy
zero in the figure�.

FIG. 3. Dependence of energies and optical strengths of magne-
toplasmons on ratio of effective dielectric constants � /�imp for the
D+ in �+ polarization for �=3. Symbols are as in Fig. 2.
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